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A NON-STATIONARY DYNAMICAL PERIODIC CONTACT PROBLEM FOR A 
HOMOGENEOUS ELASTIC HALF-PLANE* 

V.M. FOMIN 

The problem of determining the contact stresses under a periodic system 
of stamps located on the boundary of a homogeneous elastic half-plane and 
moving under the effect of a load, identical for all stamps, that is 
arbitrary in time, is investigated. The problem reduces to solving a 
Fredholm integral equation of the first kind for the Laplace transform 
of the contact stresses. The stresses are sought in the form of a double 
expansion in Chebyshev polynomials of the linear coordinate and Laguerre 
polynomials of time. The coefficients of the expansions are determined 
recursively from an infinite quasiregular system of linear algebraic 
equations. 

Despite the fact that the static periodic contact problems of the 
theory of elasticity, on the one hand (/l-6/, say), and dynamic problems 
for a finite number if stamps on the other (see the survey in /17/), have 
been studied repeatedly by different investigators, so far as we know, the 
plane non-stationary dynamical periodic contact problem has still not 
been examined at all. 

1. A system of vertical unit impulses at the points 

x=ml(m=O,i_1,+2,...) p(x,l)= n,$,S(z-ml)W) (1.1) 

where (6 (t) is the delta function), is applied to the boundary of a homogeneous elastic half- 
plane. The OS axis is directed along the half-plane boundary. The variable x and the time 
t are assumed to be dimensionless; the length scale is a and the time scale is a/c,. Here a 
is a certain parameter with the dimensions of length, and c1 is the transverse velocity of 
wave propagation in an elastic half-space. 

Substituting (1.1) into (1.24) in /7/ and using the equation 

we obtain a function &(z,s) that is the Laplace transform of the vertical displacement of a 
boundary point of the half-plane with abscissa x due to the action of a weriodic svstem of 
concentrated unit impulses 

* -am---- -- 

*?rikl..%tem.Mekhan.,48,2,315-323,1984 
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a, (5, s) = T [$+2 p(kT,s)cosiTx~. YT 

F (5, s) = 
sa v--z 

R (4.4 

R (E, s) = (2E* + 9) - 452 v’s:!+ f/s?, p = c&I, T=2rr/i 

!l.Z! 

where cr and c,are the longitudinal and transverse wave velocities in the elastic half-space, 
and p is Lam8's constant. To extract the single-valued branches of the radicals 

vw and f/s3 + 8 for fixed real 5 , slits are made in the s plane from the branch 
point s = ki$/fi, s = &is to infinity along the imaginary half-axis on which these points are 
located. We select those branches of the radicals which take positive values on the real axis. 

The bar in (1.2) and hereafter denotes the Laplace transform. 

2. Consider a system of flat stamps, periodic with period 1, that lie on the boundary 
of a homogeneous elastic half-plane (Fig.1) 1 It is assumed that there is no friction between 
the stamps and the half-plane and that the length of the contact area is constant and equal 
to the width of the stamp. 

Note that in dimensional units, the length of the stamp 

PO?(t) = a s p (5, t) dz, M,,(t) = a* s zp (x, t) dx (2.1) 
Fig.1 -1 --t 

Let us form the stamp equation of motion 

m0’+ dta 
* d’ru’ = PO(t) - PO,@), JO’S $g = MO (q - MO, (q (2.2) 

Here m,‘, J,’ is the stamp mass and axial moment of inertia, and w'and 'p are its vertical 
translational and angular displacement. 

Applying a Laplace transform to (2.1) and (2.2), and assuming the angular displacement 
to be small, we will have 

m,#%,,' (s) = P, (s) - iso, (s), J&Z” (x, s) = [Zo(s) - H, (s)lx ,(2.3) 

Po+(s)=a i B(z,s)dx, M’t,, (s) = aa i xp (x, s) dx (2.4) 
-1 -1 

m. = mo’cz2/aa, Jo = J~Cz2/a” 

Here &"(x,s) denotes the displacement of the points of the lower faces of the stamp 
because of its rotation. It is assumed that at the initial instant 

WO'(o)= w = 0, wO"(x,o)=~=o 

In combination with the periodicity of the system of stamps and loads, these conditions 
ensure the periodicity and boundedness of the stamp displacements on the whole half-plane 
boundary at each instant of time. 

The Laplace transforms of the displacements of points of the stamp base are determined 
from the formula 

(2.5) 

On the other hand, the Laplace transform of the function v(x,t), which describes the 

veritical displacements of the half-plane boundary points under the effect of the loads p(s,t), 
that are periodic in x, has the following form: 

F (x, s) = 5 81 (x - 5, s) PO (E, s) dE 
--I 

(2.6) 

Equating the right sides of (2.5) and (2.61, we arrive at the integral equation 

),j’(X- 5, s) /fro (5, s) cl5 = PO yflyOr w + .Ii#J (s) - so, (3) 

Jo,' x (lxK-1) (2.7) 
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3. We represent the solution of (2.7) in the form Of the Sum 

j&l (5, 4 = PO0 G, 4 + PO1 6 4 

where ~oo(~,s),~~,l(~,s) are solutions of (3.1) and (3.2), respectively 

1 I 

s 
is,(z-~,s)F00(5,44= 

5 (s) - PO7 (4 
wJ* (1x1<-) 

-1 

(3.1) 

Fl (z - 5, s) BOL (St s) dE = 
Ho (I) - ‘I& (6) 

J# (I 5 I < 1) (3.2) 

We seek the solution of the integral equation (3.1) in the form of a series in even 
Chebyshev polynomials 

&(f, s)= &,(s)-# 
Yrg 

which corresponds to determining the contact stresses fromthe formula 

3.3) 

3.4) 

where A,j(t) are unknown functions of time. 
We substitute (3.3) into (3.1) and (2.4), then multiply (3.1) by T,,(s)/r/l - zs and in- 

tegrate between -1 and +1 with respect to x. Using the equations (Jtn(r) is the Bessel func- 

tion of the first kind) 

we will have 

l TM _l+z+x=x, s ’ T Ir) s & cos kTx dx = (- 1)” nJ2, (kT) 
_l di -9 

(n=0,1,2,...) 

5 Bsn,sj(s)Alj(s)=O (~=i,2,3,*..) 
PQ 

OD 

Boo (4 = 16 %- ++2 P(kT,s)Jo*(kT), g=+- 

(3.5) 

(3.61 

(3.7) 

4. We make the change of parameter s- l;lp in the infinite system of linear algebraic 
equations (3.6) that depend on the complex parameter s. Under this transformation, the half- 
plane Re G-'/r is mapped on the interior of the unit circle 1 p- i! Ci. As follows from the 
second formula in (1.21, the function F(kT, 8) is analytic in the right half-plane, and 
F(kT,s)wfS/s as sdoo, Res>y for any y>O. Hence it follows that the function F(kT,llp) 
is analytic in the unit circle mentioned and is expanded there in the following series: 

F(LY,$)=p~ Pe,,(p--1)“’ (4.1) 
I##=0 

Then 

B ?n. 

p +- 2Cooa (n = j = m = 0) 
g+2Coo:(n=j=0,m=1) 

2(-- ~)'CSTI,P~.VII (for the remaining values of ,t,j,m) 
(4.3) 

c 2% *i, m = 5 F,,J,, (kT) Jsj (F:T) 
6‘ --_, (4.4) 

The following system representation results from (4.2) 
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t.Tsj(+)f B ~n,?i,m(P-l)"'=PD?n(P) (n=0,1,2,...) 
,=u md 

Do(p)= -&I%(+} 1 4 (P)=O (n > 0) 

We shall seek the function -xtj (l/P) in the form of the follwing series: 

Expanding the function 

q+=~ Q,(P--I)” 
nr=o 

-/ (G.:,. 

(‘4.6) 

in series, substituting (4.6) and (4.7) into (4.5) , and equating the coefficients of identical 
powers p - 1, we arrive at a recursion formula for the infinite systems of linear algebraic 
equations in the coefficients Aejtm (j.m = 0, I, 2, . ..) 

Boa, = e, (m = 0, 1, 2, . . .) (4.0) 
m-1 

Q=&, e, = d, - go B,,,+ak (m = 1,2,3, . . .) (4.9) 

B, = II BE,, U, m IIT n=Ol a, = II hn, m IliL 

d, = II D*n. m g20; &m = -&- Qm, &n, m = 0 

(m=O, 1,2 ,...; n=l, 2,3,...) 

Series (4.4) converges. 
To prove the convergence of series (4.41, we will find the original of the function 

P (kT, s). Evaluating the appropriate integral by contour integration, we will have /7/ 

DD 

F (&I', L) = $~,(;~)sin (k?&t)+ + 
s 

J, (5) sin (kW 4s (4.10) 
I 

The number fr>O is determined by the location of the poles of the function R (1,s) at 
the points S= +fgl. 

We apply a Laplace transform to (4.10) 

(4.11) 

For real u the function f(~)-.pf(F~+ ii?) is analytic in the circle ip--ii<i and is re- 
presented in the form of the series 

/(I') = z 1,(u) (P - IF (4.12) 
rn=O 
1 

f,(~f=~(- ,),'((l+ (18)~("'+" +(l- iu) -(m+')] (m = 0, 1, 2, . ..) (4.13) 

It follows from 14.12) that 

I 
F,_ = kl’ ! (4.14) 

The expression in square brackets is bounded uniformly for all k and m. Hence, as well 

as from the asymptotic representation 

the convergence of series (4.4) follows. 

5. We will show that each of the system (4.8) is quasiregular and can be solved by 
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-eduction. 
We introduce 

Substituting 

the notation 

the Sommerfeld integral representation for the Bessel functions 
n 

(5.9) 

into (5.11, and carrying out the transformation, we obtain 

G *n.Ij, 1= 
(_ l)n+j ' ' 
zrr* 1 5 T2*(Q T2j(tl)x In lainl/IT:F-q?)I * ++ (5.2) 

-1-1 

Representing the sine in the form of an infinite product and using the well-known spectral 
relationship 

we will have 

(5 (2) is the Riemann zeta function, and 6,,j is the Kronecker delta). 
It follows from the properties of Chebyshev polynomials that 

Gzn, 21,s= - 
T*(- iP+j n2 $,I-%,j+l _ %+l.j-a,,j 

4tr/ [ ( 2n 2n+i + > 

2 ($2n-1,**1 + %n-I.?& + Q’Ln+l, z&l + arn+l,nj+lJ 1 
The series 

G m.?j,1= 
2(-ll)n+jn* 6,j+8(__)n+ja2,,,vr 

n n>i 

I aPn, ?j I< X% (2) ($)2’“‘” [I- (-&)‘I-’ 

We note that since 1>2, then T<x. 
Using the recursion relations for Bessel functions, we can show that 

G’ 2n. *j, 5 (f) = 2 J2R qykT) @t i ;;;L 9 k-1 [ 1 f (&)y 
satisfies the inequality 

IG&A~WS& 

where C is a certain constant independent of n and j. 
Substituting (4.14) into (4.4) we have 

where the functions 
It can be seen 

2ap’ are given by (4.13). 

It follows from (5.31-(5.8) and (4.31 that for 11, i> 1 

B mm, 0 =~+O(l/n')s I&n,zj.01;5; $$ (m+-i) 

where Cl, C, are certain constants independent of n and j. 
It follows from (5.9) that 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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s 
m lim -+-- =o, s,= 

z: I & 2j. 0 I (3.10) 
n-m en.**,* j-o*j*n 

1t can similarly be shown that the following relationship holds: 

B 28,2j, m = 0 (f/n) (5.111 

Hence, and from (4.9) the boundedness of the right side in (4.8) results. Taking account 
of (5.10) we arrive at the conclusion that system (4.0) is quasiregular. 

Because of the successive solution of the truncated systems for m = 0,1,2, . . . we obtain 
the coefficients &,,,,,(j = 0,1,2, . . . . N; m = 0,1,2, . ..) of the expansion (4.6). Carrying out 

the reverse substitution p = Us in (4.6), and going over to the originals, we obtain &(t) 
is the Laguerre polynomial) 

A2j (f) = ,.& 4. m (- ilrn Gn it) (5.12) 

6. me will now estimate the convergence of series (5.12). We find the solution of the 
truncated system (3.G) by Cramer's rule 

& (s) = Ai (GA (8) (j = 0, 1, 2, . . .,N) (6.1) 

In this formula A($) is the system determinant whose order is Nfi, while Aj (s) is the 
determinant of the matrix obtained by replacing a column of the matrix of system (3.6) by a 
column of free terms. 

Let IV = 0. Then . I. 
g et*) 

Ao(s) = Ti.FjrEl, (6.2) 

The deduction can be made from (3.7) that the function Boo(s) is analytic in the right half- 
plane. It follows from physical considerations (this can also be shown by methods of the 
theory of analytic functions) that the zeros of B,,(s) are in the left half-plane. Since the 
line s = 1/2+il (-OO<~<CO) under the transformation b= lip transforms into the circle Ip - 
11 = 1, the function n/B,,(l/p) is infinitely differentiable in this circle with the point p = 0 

excluded. 
Consider the function 

H; (8) = kgl 1~” + (kT@]-* 

By using the formula (5.1.25,4) in /8/, we obtain 

HE (-9 = -$-(-f++ttI+j 
It can be seen that on the line s=V%+ iy f--a,<#<=) for fixed 5 

Hc (s) = 0 (i/s) 

We now examine the integral 

I(s)- 1 Hf(S)d& 
1 

Substituting I = di; we obtain 

(6.3) 

fS.4) 

Replacing integration along the segment [O,al by integrating along two segments [O,V,l and 

[Vz,~l,, for 8 = I/* + iy we will have 
II 

w-&- f 
C=lntyt 
47s 

0 
'T 

=(%+itl) 
c=& Imhth T 

s 
dq 

The following representation risults from (3.7) and (4.11) 

Using the asymptotic (4.15) as well as (6.4) and (6.51, w@ obtain 

(6.5) 

16.7) 
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As already remarked above, under the transformation s= l/p the line s=l/,+ fy trans- 

forms into the unit circle p =lTeiT(I rpI<n). Here y = -V2 tg (p/Z. Consequently, the function 

P~JLl (i/P), considered as a function of the parameter q~ in the segment (-n,n) has the following 

asymptotic representation in the neighbourhood of the points 'p = &jr: 

P -=u( 
&o (l/P) 

I ) (p=i-Leiy 
lnIcp--l 

(6.8) 

It can be seen that a function continuously differentiable in the segment (--n,n) and 
satisfying the asymptotic estimate (6.8) in the neighbourhood of the points cp= fn is expanded 
in a Fourier series in (-n,n) whose coefficients have the asymptotic behaviour presented 
below 

Y z1, 40 (1. P) = k=O 
nlieikQ(p = 1 + 8) , Ok = 0(1/k) (6.9) 

on the boundary of the unit circle of convergence, the power series transforms into a 
Fourier series, hence (6.9) means that the function plB,,(llp) is expanded in a circle \p -l/<l 
in the power series 

P= 
rr, KP) c Ok (P - If 

k-0 
(&go) 

Under the transformation s=llp formula (6.2) transforms into the following expression: 

_&($)+g!& (6.11) 

In many important cases the function PO(s) is analytic in the half-plane Res> 'I1 and 
has the foliowing asymptotic form there: 

P, (S) = 0 (i/s) (6.12) 

As follows from (6.10) and (6.12), the left side of (6.11), meaning also (4.6), is ex- 
panded in a power series in p--l for i- 0 , whose coefficients satisfy the asymptotic esti- 
mate 

A 0, nr = 0 (l/m*) (6.13) 

Analogous,butsomewhat more awkward, computations can be performed for N>O also. Con- 
sequently, we have shown that the coefficients of the series (4.6) satisfy the asymptotic form 
(6.13) even for j>O. 

It follows from formula (8.978.3) of /9/ that series (5.12) converges uniformly in any 
segment of the form (to, tJ (0 <t, < t, < CO). 

7. Equation (3.2) is investigated and solved in exactly the same way. In this case the 
contact stresses are determined by the series 

(i.1) 

whose coefficients Azj+l (t) (j = 0, 1, 2, . . .) are found by using the algorithm described above. 
Note that the solution of (3.1) is symmetric relative to reflection in a plane perpend- 

icular to the sketch and passing through the Oy axis. Hence and from the periodicity of the 
problem it follows that the state of stress and strain of an elastic half-plane is invariant 
to reflection in planes parallel to the plane mentioned and intersecting the Oz axis at the 
points zl; = kl2(k = 0, &I, f2, . ..). From this fact it follows that the solution of the equa- 
tion agrees with the solution of the contact problem for an elastic half-strip compressed 
between two parallel, absolutely smooth directrices (Fig.1). The solution of (3.2) is skew- 
symmetric about the Oy axis and agrees with the solution of the contact problem for a half- 
strip, on whose parallel edges are superposed constraints hindering the vertical displacements. 

PII Example. A vertical constant force F, (0 = 
1 naH(i) (H(t) is the Heaviside unit function) is 

applied suddenly to the middle of a stamp lying 
on the endface of a half-strip. An already re- 
marked above, (3.1) corresponds to this problem. 
The contact stresses are sought in the form of 
the series (3.4). Realizing the algorithm re- 
presented by (4.8) and (4.9),, in which we must 

Put 

a, = Q, = II,?. O,,, = n (m > 2) 

Fig.2 
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we obtain the coefficients A,,i,,,, (j = 0, 1, 2,.. ., iv; nr= 0, I, 2, .,M) of the expansion (5.12) of the 
function &j(t)(i = 0. 1. 2. . . ., .V) in Laguerre poiynomials. Here N is determined by the order of 
the truncated system (4.81, and M is the number of terms retained in series (5.i2). 

Graphs of the function A,(t) are represented in Fig.2 for the values g=l.5, lo (the 
continuous, dashed, and dash-dot lines, respectively) for T = n/2, @ = 0.535, <I = 0.927 and diagrams 
of the contact stresses are displayed for different values of t at g= 5. Curve 1 corresponds 
to the value t= 0.1, curve 2 to the value t = 2.6; the stress diagrams for f= O.ci and 3.6 
(curve 3), for t= 1.1 and 3.1 (curve 4), and also for t= 1.6 and 2.1 (curve 5) agree practic- 
ally in pairs. 
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THEfUWPfiORESIS AND THE INTERACTION OF 
UNIFOF~LY HEATED SPHERI~L PARTICLES IN A GAS* 

A.YU. BORIS 

Translated by M.D.F. 

The thermophoresis of a uniformly heated spherical particle caused by the 
action of Branett temperature stresses is investigated, and the thermo- 
phoretic force is calculated for arbitrary temperature drops between the 
particle and the gas. An analogous problem was considered earlier /t/ in 
the linear approximation of a small temperature drop. 

The results obtained are used to estimate the nature and interaction force of widely 
spaced particles. It is shown that the gas motion caused by the temperature stresses can 
result in displacement of the system of differently heated particles. 

We consider a uniformly heated (cooled) spherical particle in a gas at rest at infinity 
whose temperature varies weakly along the x axis. The gas is regarded as a continuous medium. 
The temperature stresses evoke a pressure redistribution and gas motion around the particles 

/2/, which will result in the appearance of a thermophoretic force acting on the particle. 
We introduce dimensionless coordinates, temperature, density, viscosity, thermal conduct- 

ivity, velocity, pressure, and force as follows: 
a(2 Y I). F-F. P,P IL&* hcJ 

Here a is the radius of the sphere; when there is no temperature gradient at infinity, 
the subscriptm is ascribed to the appropriate gas parameters far from the sphere. The 

dimensionless continuity, energy, and momentum equations describing the flow around the 

particle /2/, and the boundary conditions can be written in the following form: 
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